Abstract
The major bacterial histone-like protein HU is a small, basic, dimeric protein composed of two closely related subunits. HU is involved in several processes in the bacterial cell such as the initiation of replication, transposition, gene inversion and cell division. It has been suggested that HU could introduce structural changes to the DNA which would facilitate or inhibit the binding of regulatory proteins to their specific sites. In this study we investigated the effect of HU on the binding of LexA protein, the regulator of SOS functions, to three of its specific binding sites. We show that HU can displace LexA from its binding sites on the operators of the lexA, recA and sfiA genes. The lexA operator was the most sensitive while the higher affinity sfiA operator was the least sensitive. Since HU, like its homologue IHF, probably binds DNA in the minor groove we tested the effect of distamycin, a drug which binds to the minor groove, on LexA binding. Like HU, this drug disrupted LexA-operator complexes. These results suggest that distortion of the minor groove of the lexA operators excludes the binding of the repressor to the major groove.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.