Abstract

In this work, we describe a systematic comparative genomic analysis of promiscuous domains in genomes of Bacteria and Archaea. A quantitative measure of domain promiscuity, the weighted domain architecture score (WDAS), was used and applied to 1317 domains in 1320 genomes of Bacteria and Archaea. A functional analysis associated with the WDAS per genome showed that 18 of 50 functional categories were identified as significantly enriched in the promiscuous domains; in particular, small-molecule binding domains, transferases domains, DNA binding domains (transcription factors), and signal transduction domains were identified as promiscuous. In contrast, non-promiscuous domains were identified as associated with 6 of 50 functional categories, and the category Function unknown was enriched. In addition, the WDASs of 52 domains correlated with genome size, i.e., WDAS values decreased as the genome size increased, suggesting that the number of combinations at larger domains increases, including domains in the superfamilies Winged helix-turn-helix and P-loop-containing nucleoside triphosphate hydrolases. Finally, based on classification of the domains according to their ancestry, we determined that the set of 52 promiscuous domains are also ancient and abundant among all the genomes, in contrast to the non-promiscuous domains. In summary, we consider that the association between these two classes of protein domains (promiscuous and non-promiscuous) provides bacterial and archaeal cells with the ability to respond to diverse environmental challenges.

Highlights

  • Since Wetlaufer [1] described that consecutive residues in polypeptide chains tend to fold into more or less compact modules called domains, it has been generally accepted that domains are the protein evolutionary modules, and modular reuse has been demonstrated in all domains of life [2]

  • In order to gain insights into protein architecture among prokaryotes, 1214 bacterial and 105 archaeal non-redundant genomes were analyzed in terms of their repertoire of protein domains

  • We considered the domains as a function of their correlation to genome size, where the correlation between a weighted domain architecture score (WDAS) for a given domain and the genome size could be positive or negative and a set of uncorrelated domains could be identified

Read more

Summary

Introduction

Since Wetlaufer [1] described that consecutive residues in polypeptide chains tend to fold into more or less compact modules called domains, it has been generally accepted that domains are the protein evolutionary modules, and modular reuse has been demonstrated in all domains of life [2]. This modularity might be advantageous to the organisms, allowing signaling proteins. Protein architecture in prokaryotic genomes collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call