Abstract

Carbon tetrachloride (CCl4) is a liquid that is colorless, transparent, inflammable, and volatile. Its central carbon atom is surrounded by four Cl- atoms. As a result, the objective of this effort was to estimate the anti-oxidant properties of silver nanoparticles (AgNPs) made utilizing aqueous plant extracts from Taraxacum officinale leaves. A green synthesis of AgNPs using a synergistic aqueous extract from T. officinale leaves was tested against liver damage in rats caused by CCl4. The rats were randomly distributed into seven groups: Group 1: Control group, Group 2: Olive oil group, Group 3: AgNPs-treated group (100 mg/kg BW.), Group 4: AgNPs-treated group (200 mg/kg BW.), Group 5: CCl4 + Olive oil group, Group 6: (CCl4 + Olive Oil) + 100 mg/kg of AgNPs-treated group, and Group 7: (CCl4 + Olive oil) + 200 mg/kg of AgNPs-treated group one a week for 6 weeks. This study demonstrated a sustainable method for synthesizing AgNPs utilizing T. officinale leaf (TOL) extract. To characterize the synthesized T. officinale leaf-silver nanoparticles (TOL-AgNPs), various microscopic and spectroscopic methods were used. The effectiveness of the biosynthesized TOL-AgNPs against CCl4 was tested to assess their antioxidant potential. The antioxidant properties of synthetic TOL-AgNPs were also evaluated. Histopathological research showed that all groups treated with nano-extract had less severe inflammatory responses. Our findings demonstrated that AgNPs synthesized using the leaves of T. officinale possess a potential anti-oxidant activity against CCl4-induced liver injury in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call