Abstract

P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) are ATP-binding cassette (ABC) transporters that confer multixenobiotic resistance (MXR) via their efflux activity, which enables a variety of xenobiotics to be expelled from cells. MXR has been proposed as the first line of defense against xenobiotics. In this study, the protective roles of P-gp and MRP in the rotifer Brachionus koreanus were examined in response to four biocides (alachlor, chlorpyrifos, endosulfan, and molinate) using fluorescent substrates and inhibitors specific to P-gp and MRP. Exposure of rotifers to the four biocides resulted in increased P-gp and MRP activity. Moreover, the rotifers became more sensitive to the biocides with a reduced tendency in survival and slower population growth rates, when P-gp or MRP was inhibited. These findings suggest that P-gp and MRP are involved in the defense system in response to biocide exposure. Furthermore, the transcriptional levels of the genes encoding P-gp and MRP were examined to uncover the mechanism by which MXR is regulated. Our results demonstrate a crucial role of the MXR efflux system in the defense response to biocides, thereby providing a better understanding of rotifer defense mechanisms on the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call