Abstract

Several studies have reported the oocyte damage in mice during vitrification; however, little has been known about the protective role that antifreeze protein 3 (Afp3) plays on their cellular structure and function during vitrification. In order to observe the extracellular cryo-protective role of Afp3, four groups were divided randomly. The observations were made for changes in cytoskeleton, expression of the related genes before and after vitrification, and also for changes in the in vitro developmental potential of oocytes. The outcomes were as follows: (i) microtubules, actin filaments and chromosomal integrity were more intact in the vitrification group supplemented with additional Afp3 compared to the vitrification group. In the fresh control group and the group with additional cryoprotectant containing ethylene glycol (EG), dimethyl sulfoxide (Me2SO) and sucrose, the organelles were more intact than the other two vitrification groups. (ii) Real-time PCR analysis revealed that the relative quantification of mitotic arrest deficient 2 (Mad2) and centromere protein E (Cenp-e) were significantly higher in the vitrification group with additional Afp3, the fresh control group and the one group with additional cryoprotectant, in comparison to the vitrification group. On the contrary, the expression of cold inducible RNA-binding protein (Cirbp) and kinesin-5 motor protein (Eg5) were up-regulated in the vitrification group compared to the remaining groups. (iii) The fertilization rate and the recovery rate in the fresh control group and the group with additional cryoprotectant were higher than the other two vitrification groups; furthermore, the recovery rate and the fertilization rate in the vitrification group with Afp3 were higher than the vitrification group. However, the blastocyst formation rate in all the four groups showed no statistical significance. In conclusion, Afp3 plays a positive role in the structure and function of mice oocytes in vitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.