Abstract

PurposeThis study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. MethodsThis study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. ResultsActive ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). ConclusionThe active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call