Abstract

Volatile anesthetic pretreatment protects the vasculature from inflammation-induced injury via mechanisms involving the activation of adenosine triphosphate-sensitive potassium (K(ATP)) channels and/or protein kinase C (PKC). Therefore, we hypothesized that K(ATP) and PKC agonists may mimic the protective effects of volatile anesthetics in vitro and in vivo. In vitro, rat vascular smooth muscle cells (VSM) and aortic endothelial cells (AEC) were used to evaluate whether pretreatment with a K(ATP) agonist, cromakalim (CRK), or a PKC agonist, phorbol 12-myristate 13-acetate (PMA), decreases lipopolysaccharide (LPS)-induced cell injury. Cell survival was determined by trypan blue staining after 6 h. In vivo, rats received systemic LPS or saline with or without pretreatment with PMA or CRK. Mean arterial blood pressure, the response to endothelium-dependent (acetylcholine; ACH) and -independent (sodium nitroprusside) vasodilators, and arterial blood gases were determined after 6 h. Cell survival in VSM and AEC control cultures was more than 90%, which was not altered in the presence of PMA or CRK, whereas LPS significantly decreased cell survival. PMA (0.1-10 microM) significantly attenuated the LPS-induced decrease in cell survival by 28%-37% in VSM and 39%-53% in AEC, and CRK (1 mM) increased cell survival by 24% in VSM and 22% in AEC. In vivo, PMA and CRK pretreatment had no significant effect on measured variables in control rats. LPS decreased mean arterial blood pressure and vasodilation to ACH and sodium nitroprusside and caused hypoglycemia. PMA, but not CRK, increased ACH-dependent vasodilation (46%) at 6 h, but neither agonist altered the other detrimental effects of LPS. In conclusion, PKC and K(ATP) agonists appear to protect AEC and VSM cells against inflammation in vitro, but the systemic administration of PKC and K(ATP) agonists appeared to exert minimal or no protection in our in vivo model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.