Abstract

BackgroundNeonatal hypoxic-ischemic encephalopathy (HIE), a kind of hypoxic-ischemic brain damage caused by perinatal asphyxia, is the most crucial cause of neonatal death and long-term neurological dysfunction in children. We aimed to investigate the protective effects of micro (mi)R-27a on HIE in neonatal rats.MethodsA rat model of neonatal HIE was constructed by modification of the Rice-Vannucci model. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to test the expressions of miR-27a, FOXO1 messenger RNA (mRNA), interleukin-1β (IL-1β) mRNA, and tumor necrosis factor-α (TNF-α) mRNA, and western blot was applied to test the expression of FOXO1. In order to overexpress miR-27a, an intracerebroventricular injection (i.c.v) of miR-27a mimic was administered. We adopted 2,3,5-triphenytetrazolium chloride (TTC) staining and brain water content measurement to test the effects of miR-27a on the infarcted volume and edema in brain after HIE. Flow cytometry (FCM) analysis was applied to test the effects of miR-27a on the infiltrated peripheral immune cells in the rat brains after HIE.ResultsWe successfully established a rat model of neonatal HIE. It was revealed that the expressions of miR-27a decreased gradually after HIE, however, the expressions of FOXO1 mRNA increased. After injection of the miR-27a mimic, the expression of miR-27a in the rat HIE model brains was significantly upregulated, however, the expression of FOXO1 was robustly downregulated. Both TTC staining and brain water content showed that the infarcted volume and brain edema was markedly increased after HIE. Interestingly, the overexpression of miR-27a reduced the infarcted volume and edema induced by HIE. Additionally, RT-qPCR and FCM analysis showed that HIE lead to increases of IL-1β, TNF-α, and infiltrated immune cells. Overexpression of miR-27a could reduce the expressions of IL-1β mRNA and TNF-α mRNA, and the cell numbers of infiltrated peripheral macrophages and neutrophils in the brain.ConclusionsMiR-27a plays protective roles by reducing infarct volume and brain edema, and inhibiting inflammatory factors and infiltrated peripheral immune cells by targeting FOXO1 in neonatal HIE rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.