Abstract
Objective: To elucidate the protective effect of Gan Shen Fu Fang (GSFF) on liver endothelial cells in common bile duct-ligated (CBDL) rats. Materials and Methods: Cirrhosis was induced by common bile duct ligation. The rats were divided into three groups: sham group, CBDL group, and GSFF group. After 2 weeks of ligation, rats in the GSFF group were administered GSFF. After 4 weeks, the hydroxyproline (Hyp) content of liver tissues was spectrophotometrically determined. The histological changes were evaluated by H and E and Masson staining. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to observe the ultrastructural changes in the liver, especially in the liver sinusoidal endothelial cells (LSECs). Results: Hyp synthesis was significantly inhibited by GSFF, which agreed with the results from H and E and Masson staining for liver fibrosis. The TEM observations of CBDL rats revealed reduced hepatocyte microvilli and deposited fibrous tissue underneath LSECs. SEM confirmed the TEM findings and showed that the fenestrae of LSECs decreased and even disappeared in CBDL rats. The morphological results indicated hepatic sinusoid capillarization. GSFF promoted the restoration of fenestrae and reversed hepatic sinusoid capillarization. Conclusion: GSFF can inhibit Hyp synthesis, restore the fenestrae of LSECs, and reverse hepatic sinusoid capillarization in CBDL rats. These results provide a basis for future detailed investigations of the mechanism of action of GSFF in LSECs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.