Abstract

An insight into the role of LiNO3 additive in an ether-based electrolyte for lithium sulfur battery has been presented. Herein, we proposed a formation mechanism of solid-electrolyte interphase on the surface of lithium metal anode by using the theoretical reactive force field (ReaxFF) simulation method. The interaction between the reactive lithium metal and nitrate ions results in the formation of LixNOy clusters, distributed homogeneously in both the SEI layer and electrolyte phase. Not only can these clusters be an efficient surface protection layer of lithium metal anode but also, they can suppress the lithium polysulfides shuttle effect by adsorbing liquid lithium polysulfide intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call