Abstract

The proteasome engages in protein degradation as a regulatory process in biological transactions. Among other cellular processes, the proteasome participates in degradation of ubiquinated cyclins in mitosis. However, its role in meiosis has not been established. Resumption of meiosis in the oocyte involves the activation of maturation promoting factor (MPF), a complex of p34cdc2 and cyclin B. Inactivation of this factor, occurring between the two meiotic divisions, is associated with degradation of cyclin B. In this study, we examined the possible involvement of the proteasome in regulation of the exit from metaphase I in spontaneously maturing rat oocytes. We found that upon resumption of meiosis, proteasomes translocate to the spindle apparatus. We further demonstrated that specific inhibitors of proteasome catalytic activity, MG132 and lactacystin, blocked polar body extrusion. Chromosome and microtubule fluorescent staining verified that MG132-treated oocytes were arrested at metaphase I. Intervention of proteasomal action with this inhibitor also resulted in accumulation of cyclin B and elevated activity of MPF. These data demonstrate that proteasomal catalytic activity is absolutely essential for the decrease in MPF activity and completion of the first meiotic division. Its translocation to the spindle apparatus may facilitate the timely degradation of cyclin B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.