Abstract

Anatomically preserved fossils allow estimation of hydraulic parameters, potentially providing constraints on interpreting whole-plant physiology. However, different organ systems have typically been considered in isolation - a problem given common mismatches of high and low conductance components coupled in the hydraulic path of the same plant. A recent paper addressed the issue of how to handle resistance mismatches in fossil plant hydraulics, focusing on Carboniferous medullosan seed plants and arborescent lycopsids. Among other problems, however, a fundamental error was made: the transpiration stream consists of resistances in series (where resistances are additive and the component with the largest resistance can dominate the behavior of the system), but emphasis was instead placed on the lowest resistance, effectively treating the system as resistances in parallel (where the component with the smallest resistance will dominate the behavior). Instead of possessing high assimilation capacities to match high specific stem conductances, it is argued here that individual high conductance components in these Paleozoic plants are nonetheless associated with low whole-plant productivity, just as can be commonly seen in living plants. Resolution of how to handle these issues may have broad implications for the Earth system including geobiological feedbacks to rock weathering, atmospheric composition, and climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.