Abstract

The James Webb Space Telescope (JWST) has provided the first opportunity of studying the atmospheres of terrestrial exoplanets and estimating their surface conditions. Earth-sized planets around Sun-like stars are currently inaccessible with JWST, however, and will have to be observed using the next generation of telescopes with direct-imaging capabilities. Detecting active volcanism on an Earth-like planet would be particularly valuable as it would provide insight into its interior and provide context for the commonality of the interior states of Earth and Venus. In this work, we used a climate model to simulate four exoEarths over eight years with ongoing large igneous province eruptions with outputs ranging from 1.8 to 60 Gt of sulfur dioxide. The atmospheric data from the simulations were used to model direct-imaging observations between 0.2 and 2.0 μm, producing reflectance spectra for every month of each exoEarth simulation. We calculated the amount of observation time required to detect each of the major absorption features in the spectra, and we identified the most prominent effects that volcanism had on the reflectance spectra. These effects include changes in the size of the O3, O2, and H2O absorption features and changes in the slope of the spectrum. Of these changes, we conclude that the most detectable and least ambiguous evidence of volcanism are changes in both O3 absorption and the slope of the spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.