Abstract

Peptide hormones governing many developmental processes are generated via endoproteolysis of inactive precursor molecules by a family of subtilisin-like proprotein convertases (SPCs). We previously identified mutations in the Drosophila amontillado (amon) gene, a homolog of the vertebrate neuroendocrine-specific Prohormone Convertase 2 (PC2) gene, and showed that amon is required during embryogenesis, early larval development, and larval molting. Here, we define amon requirements during later developmental stages using a conditional rescue system and find that amon is required during pupal development for head eversion, leg and wing disc extension, and abdominal differentiation. Immuno-localization experiments show that amon protein is expressed in a subset of central nervous system cells but does not co-localize with peptide hormones known to elicit molting behavior, suggesting the involvement of novel regulatory peptides in this process. The amon protein is expressed in neuronal cells that innervate the corpus allatum and corpora cardiaca of the ring gland, an endocrine organ which is the release site for many key hormonal signals. Expression of amon in a subset of these cell types using the GAL4/UAS system in an amon mutant background partially rescues larval molting and growth. Our results show that amon is required for pupal development and identify a subset of neuronal cell types in which amon function is sufficient to rescue developmental progression and growth defects shown by amon mutants. The results are consistent with a model that the amon protein acts to proteolytically process a diverse suite of peptide hormones that coordinate larval and pupal growth and development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call