Abstract
Microgreens are specialty vegetables that contain human health-promoting phytochemicals. Typically, microgreens are cultivated in controlled environments under red and blue light-emitting diodes (LEDs). However, the impact of varying the proportions of these light qualities on the composition of diverse phytochemicals in indoor-grown microgreens is unclear. To address this problem, the levels of chlorophylls, carotenoids, ascorbates, phenolics, anthocyanins, and nitrate were examined in arugula (Eruca sativa L.), ‘Red Russian’ kale [Brassica napus L. subsp. napus var. pabularia (DC.) Alef.], ‘Mizuna’ mustard (Brassica juncea L.), and red cabbage (Brassica oleracea L. var. capitata f. rubra) microgreens following cultivation under LEDs supplying varying proportions of blue light (5% to 30%) and red light (70% to 95%). Varying the proportion of blue light did not affect the extractable levels of total chlorophyll, total carotenoids, or nitrate in all four microgreen species. Generally, the levels of reduced and total ascorbate were greatest in arugula, kale, and mustard microgreens at 20% blue light, and a minor decrease was apparent at 30% blue light. These metabolite profiles were not impacted by the blue light percentage in red cabbage. Kale and mustard accumulated more total phenolics at 30% blue light than all other blue light regimens; however, this phytochemical attribute was unaffected in arugula and red cabbage. The total anthocyanin concentration increased proportionally with the percentage of supplied blue light up to 30% in all microgreens, with the exception of mustard. Our research showed that 20% blue light supplied from LED arrays is ideal for achieving optimal levels of both reduced and total ascorbate in all microgreens except red cabbage, and that 30% blue light promotes the greatest accumulation of total anthocyanin in indoor-grown Brassicaceae microgreens, with the exception of mustard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.