Abstract

The properties of neutron star are studied in the framework of relativistic Hartree–Fock (RHF) model with realistic nucleon–nucleon (NN) interactions, i.e., Bonn potentials. The strong repulsion of NN interaction at short range is properly removed by the unitary correlation operator method (UCOM). Meanwhile, the tensor correlation is neglected due to the very rich neutron environment in neutron star, where the total isospin of two nucleons can be approximately regarded as [Formula: see text]. The equations of state of neutron star matter are calculated in [Formula: see text] equilibrium and charge neutrality conditions. The properties of neutron star, such as mass, radius and tidal deformability, are obtained by solving the Tolman–Oppenheimer–Volkoff equation and tidal equation. The maximum masses of neutron from Bonn A, B, C potentials are around [Formula: see text]. The radius are [Formula: see text][Formula: see text]km at [Formula: see text], respectively. The corresponding tidal deformabilities are [Formula: see text]. All of these properties are satisfied with the recent observables from the astronomical and gravitational wave devices and are consistent with the results from the relativistic Brueckner–Hartree–Fock model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call