Abstract

Spider silk has fascinated mankind for millennia, but it is only in recent decades that scientific research has begun to unravel all its characteristics and applications. The uniqueness of spider silk resides in its versatility, in which a combination of high strength and extensibility results in extraordinary toughness, superior to almost all natural and man-made fibers. Dragline silk consists of proteins with highly repetitive amino acid sequences, which have been correlated with specific secondary structures responsible for its physical properties. The native fiber also shows high cytocompatibility coupled with low immunogenicity, making it a promising natural biomaterial for numerous biomedical applications. Recently, novel technologies have enabled new insights into the material and biomedical properties of silk. Due to the increasing interest in spider silk, as well as the desire to produce synthetic alternatives, we present an update on the current knowledge of silk fibers produced by the spider genus Trichonephila.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.