Abstract

The structural, morphological, magnetic, dielectric, and gas analyzing properties are studied in CuFe2O4(Mn–CuFe2O4) substituted spinel ferrite nanoparticles synthesized via evaporation and automatic combustion. The obtained nanoparticles are established to possess a spherical shape. The smallest size of Mn–CuFe2O4 (~9 nm) nanoparticles is achieved at using automatic combustion. X-ray diffraction and Mossbauer spectroscopy reveal that the crystal lattice constant and the Mn–CuFe2O4 nanoparticle size are larger at augmenting the annealing temperature from 600 to 900°С. The dielectric permeability and losses of Mn–CuFe2O4 nanoparticles are studied at various synthesis conditions and temperatures of annealing. Various aspects of gas sensibility of synthesized Mn–CuFe2O4 nanoparticles are tested, as well. The maximum response to the presence of liquefied petroleum gas is 0.28 at the optimum working temperature of 300°C for Mn–CuFe2O4 nanoparticles obtained via automatic combustion and it is 0.23 at 250°C for deposited nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.