Abstract

In this work, we study the physical properties of the high-energy (HE) emission region by modeling the quasi-simultaneous multi-wavelength(MWL) spectral energy distributions (SEDs) of 27 Fermi-LAT detected low-synchrotron-peaked (LSP) blazars. We model the jets MWL SEDs in framework of a well accepted single-zone leptonic model including synchrotron self-Compton and external Compton (EC) processes for the jets in a state of equipartition between particle and magnetic field energy densities. In the model the GeV γ-ray spectrum is modeled by a combination of two different external Compton-scattered components: (i) EC scattering of photons coming from disk and broad line region (BLR), and (ii) EC scattering of photons originating from the dust tours (DT) and BLR. We find that the SEDs can be well reproduced by the equipartition model for the most majority of the sources, and the results are in agreement with many recent studies. Our results suggest that the SEDs modelling alone may not provide a significant constraint on the location of the HE emission region if we do not know enough about the physical properties of the external environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.