Abstract

Diamond-like carbon films containing up to 23.1 at. % of fluorine (F-DLC), were deposited onto silicon substrates by low-frequency, pulsed DC, plasma-activated, chemical vapour deposition (PACVD). The influence of fluorine on plasma current density, deposition rate, composition, bonding structure, surface energy, hardness, stress and biocompatibility was investigated and correlated with the fluorine content. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence C–C, C–CF and C–F for F-DLC films with a low fluorine concentration (1.5–12.1 at. %), however for films with a higher fluorine content (23.0 at. %) an additional peak due to CF 2 bonding was detected. The addition of fluorine into the DLC film resulted in lower stress and hardness values. The reduction in these values was attributed to the substitution of strong C=C by weaker C–F bonds which induces a decrease in hardness. Ion scattering spectrometery (ISS) measurements revealed the presence of fluorine atoms in the outmost layer of the F-DLC films and there was no evidence of surface oxygen contamination. The water contact angle was found to increase with increasing fluorine content and has been attributed to the change of the bonding nature in the films, in particularly increasing CF and CF 2 bonds . Biocompatibility tests performed using MG-63 osteoblast-like cell cultures indicated homogeneous and optimal tissue integration for both the DLC and the F-DLC surfaces. This pulsed-PACVD technique has been shown to produce biocompatible DLC and F-DLC coatings with a potential for large area applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call