Abstract

Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3–4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3–4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.