Abstract

Based on sequence similarity, the mscCG gene product of Corynebacterium glutamicum belongs to the family of MscS-type mechanosensitive channels. In order to investigate the physiological significance of MscCG in response to osmotic shifts in detail, we studied its properties using both patch-clamp techniques and betaine efflux kinetics. After heterologous expression in an E scherichia coli strain devoid of mechanosensitive channels, in patch-clamp analysis of giant E. coli spheroplasts MscCG showed the typical pressure dependent gating behavior of a stretch-activated channel with a current/voltage dependence indicating a strongly rectifying behavior. Apart from that, MscCG is characterized by significant functional differences with respect to conductance, ion selectivity and desensitation behavior as compared to MscS from E. coli. Deletion and complementation studies in C. glutamicum showed a significant contribution of MscCG to betaine efflux in response to hypoosmotic conditions. A detailed analysis of concomitant betaine uptake (by the betaine transporter BetP) and efflux (by MscCG) under hyperosmotic conditions indicates that MscCG may act in osmoregulation in C. glutamicum by fine-tuning the steady state concentration of compatible solutes in the cytoplasm which are accumulated in response to hyperosmotic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.