Abstract
The paper studies the dynamical propagation of star-shaped cracks symmetrically arranged in an elastic thin plate, subjected to the action of instantly applied, comprehensively (uniformly) stretching stresses, which implies a self-similar problem with homogeneous stresses and velocities of particles. Occurrence of such motion patterns is established through experiments. By using the Smirnov–Sobolev functional-invariant solutions method and a careful choice of mappings, the problem is reduced to some boundary value problem of the theory of complex variable functions, and exact analytic solution of the original problem, including a closed-form solution for important stress intensity coefficient near the end of the crack, is derived. We also establish a fundamental theoretical limit imposed on the number of cracks—there has to be at least three cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.