Abstract

Abstract The linear stability of a differentially heated cylindrical annulus, of finite length, containing a dissipationless fluid and rotating uniformly in a non-uniform toroidal magnetic field is studied. The analysis is restricted to the situation where the instabilities are driven by buoyancy. If the end-surfaces are flat, the unstable waves propagate against the basic flow, i.e. westward. When the effect of slight distortions in the end-surfaces on the propagation speeds of these waves are investigated, it is found that these distortions can decrease or increase the propagation speeds depending on a variety of conditions. The application of these results to Hide's (1969) theory on the effects of bumps on the core-mantle interface of the Earth indicates that these topographical features may lead to irregular fluctuations in the westward drift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.