Abstract

Purpose Akt/mTOR/p70S6K signaling pathway promotes motor function recovery after spinal cord injury (SCI) in both neurons and astrocytes. But the role and mechanism of this pathway in oligodendrocytes during nerve repair following SCI has not been researched. This study aimed to investigate the effect and mechanism of this signaling pathway in oligodendrocytes on nerve myelin regeneration and motor function recovery in rats with SCI. Methods After inhibiting or activating this signaling pathway, Western blotting and double immunofluorescence labeling were used to determine the levels of the signaling molecules in this pathway and myelin formation-related proteins in the plane of the thoracic segment of the injured spinal cord. The level of motor function recovery was evaluated and the oligodendrocytes involved in nerve myelin regeneration were studied. Primary oligodendrocytes were isolated and cultured in vitro, then MBP, PLP, and MOG were measured with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results Akt/mTOR/p70S6K signaling pathway was activated after SCI compared with the sham-operated rats, prominently elevated levels of the pathway components were observed in the SC79-treated group. The activation of the signaling pathway significantly increased the expression levels of myelin formation-related proteins, including MBP, PLP, and MOG, and improved the Basso, Beattie, and Bresnahan (BBB) scores in the injured spinal cord. Conversely, rapamycin suppressed the expression of these signaling molecules and reduced the levels of myelin formation-related proteins. Conclusion Akt/mTOR/p70S6K signaling pathway activation can contribute to nerve myelin regeneration and has the potential to improve the regenerative environment and motor function, as well as the potential to promote repair of SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.