Abstract

This study found that graphene oxide (GO) improved microbial denitrification at low temperatures (~12 °C), and the optimal concentration was 10 mg/L as the removal rate of NO3-N increased by 17%. At the optimal concentration, GO improved the electron transport system activity of the microbes and enhanced the activity of nitrate reductase and nitrite reductase while exhibited low microbial toxicity. The addition of GO increased the content of tightly bound extracellular polymeric substances (EPS). The results of fluorescence spectrometer indicated that GO accelerated the renewal of bound EPS (B-EPS). Fourier Transform infrared spectroscopy (FTIR) results showed that GO affected the secondary structure of the protein in B-EPS, making B-EPS more hydrophobic and promoting microbial aggregation. B-EPS affected by GO can promote the electron transfer process of microorganisms. However, high concentration (>25 mg/L) of GO may inhibit denitrification by competing for electrons, which was not conducive to denitrification thermodynamically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.