Abstract

Catalytic conversion of CO2 into methanol utilizing green hydrogen produced from renewable energy is a promising route to realize carbon neutrality. Although ZnZrOx solid solution catalyst displays excellent catalytic performance, it is still highly desired to make any further improvement. Herein, we found the promoting effect of incorporating Ga into ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol. Ga promoted ZnZrOx (GaZnZrOx) solid solution catalyst exhibits CO2 conversion of 8.8% and methanol space time yield of 630 mg gcat−1 h−1 that are higher than those of ZnZrOx solid solution catalyst (7.7%, 556 mg gcat−1 h−1) at 320 °C, while the highly selectivity toward methanol remains unchanged. Chemisorption and H2-D2 exchange results show that GaZnZrOx solid solution catalyst displays higher capacity for the adsorption and activation of H2 than ZnZrOx solid solution catalyst. Electron paramagnetic resonance result suggests that more oxygen vacancies are derived after incorporating Ga into ZnZrOx solid solution catalyst. In situ diffuse reflectance infrared Fourier transform spectra indicate that the HCOO* and CH3O* species are the main intermediate species. The higher IR intensity of intermediate species and lower CH3O*/HCOO* ratio on GaZnZrOx solid solution catalyst suggest that the hydrogenation of HCOO* to CH3O* is boosted. These results reveal the promoting effect of incorporated Ga into ZnZrOx solid solution catalyst that improves the adsorption and activation of H2 and CO2, thus enhancing catalytic performance of methanol synthesis from CO2 hydrogenation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.