Abstract

Parathyroid hormone (PTH) can promote bone formation and mineralization in mandibular fractures, and is systemically administered through daily injections. In this study, the local delivery of PTH using carboxymethyl chitosan/polyvinyl alcohol and alginate was investigated. Bovine serum albumin was used as a drug substitute, and the delivery system was verified to release drugs in a pulsed rhythm. After the delivery system was subcutaneously implanted in Sprague-Dawley (SD) rats, no rejection reaction was detected, indicating that it has good biocompatibility and biodegradability in vivo. Then, an SD rat model of mandibular fracture was established, and 24 rats were randomly divided into two groups. The control group was reduced and fixed with screws and a microplate, and the experimental group received pulsatile PTH release system (14 μg PTH) + screws and microplate fixation. The animals were euthanized on postoperative weeks 1-4. Observation of gross specimens, digital radiography, and hematoxylin and eosin showed that the local PTH pulsatile release system promoted osteogenesis and accelerated fracture healing. In summary, PTH can be loaded by biomaterials to locally target the fracture and stimulate bone formation. Moreover, the pulsatile PTH release system provides a potential therapeutic protocol for mandibular fracture. Impact statement Our study prepares a drug release system that could impulsively release parathyroid hormone. The system could enhance bone regeneration in rats with mandibular fracture. These data provide a foundation for future studies aimed to understand and optimize the use of bioactive molecule pulsatile delivery for bone regeneration and tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call