Abstract
Cardiovascular medicine witnessed notable advances for the past decade. Multiomics research offers a new lens for precision/personalized medicine for existing and emerging drugs used in the cardiovascular clinic. Beta-blockers are vital in treating hypertension and chronic heart failure. However, clinical use of beta-blockers is also associated with side effects and person-to-person variations in their pharmacokinetics and pharmacodynamics. A comprehensive understanding of the mechanisms that underpin the side effect landscape of beta-blockers is imperative to optimize their therapeutic value. In addition, current research emphasizes the circadian clock's vital roles in regulating pharmacological parameters. Administration of the beta-blockers at specific dosing times could potentially improve their effectiveness and reduce their toxic effects. The rapid development of mass spectrometry technologies with chemical proteomics and thermal proteome profiling methods has also substantially advanced our understanding of underlying side effects mechanisms by unbiased deconvolution of drug targets and off-targets. Metabolomics is steadily demonstrating its utility for conducting mechanistic and toxicological analyses of pharmacological compounds. This article discusses the promises of cutting-edge proteomics and metabolomics approaches to investigate the molecular targets, mechanism of action, adverse effects, and dosing time dependency of beta-blockers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.