Abstract
Acid leaching has been widely used in Pb–Pb chronology especially on meteorite samples, as it enhances the precision and accuracy of the chronology by separating radiogenic Pb from non-radiogenic Pb in the samples. Yet, the detailed mechanism of the radiogenic Pb separation remains elusive. Here we report scanning electron microscopy observations of acid-leached minerals from three achondrites that were previously analyzed for pyroxene PbPb dating (D'Orbigny, Ibitira and Northwest Africa 6704), and one stony‑iron meteorite (Brenham). Moreover, we present chemical analysis of acid leachates and residues of pyroxene and whole-rock fractions from the three achondrites using inductively coupled plasma mass spectrometry. The combined results reveal the resistance of minerals to acid treatments with HNO3, HCl, and HF and, in turn, allow us to explore the prospects and limitations of acid leaching for PbPb chronology. In particular, we show that (i) washing with dilute acids can efficiently liberate contaminant terrestrial Pb adsorbed on the mineral surface; (ii) hot and more concentrated (~6 M) HNO3 and HCl can separate pyroxenes from sulfides and anorthitic plagioclase that are highly enriched in initial non-radiogenic Pb; (iii) albitic plagioclase and pyroxenes show limited dissolution during the HNO3 and HCl treatments, but are progressively leached by hot 1 M HF, making it difficult to separate them from each other; and (iv) within single pyroxene grains having exsolved lamellar textures, high-Ca lamellae are more efficiently leached by the HF treatment than low-Ca ones. In the context of a two-stage Pb isotopic evolution model for pyroxene lamellae, we demonstrate that heterogeneous and incomplete dissolution of pyroxene lamellae with dilute HF can result in inaccurate PbPb age estimates. This may account for previously observed scattered Pb isotopic data for meteorite samples that were taken as evidence for isotope fractionation in a radiogenic Pb component during HF treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.