Abstract
The Gale transform, an involution on sets of points in projective space, appears in a multitude of guises and in subjects as diverse as optimization, coding theory, theta functions, and recently in our proof that certain general sets of points fail to satisfy the minimal free resolution conjecture (see Eisenbud and Popescu, 1999, Invent. Math.136, 419–449). In this paper we reexamine the Gale transform in the light of modern algebraic geometry. We give a more general definition in the context of finite (locally) Gorenstein subschemes. We put in modern form a number of the more remarkable examples discovered in the past, and we add new constructions and connections to other areas of algebraic geometry. We generalize Goppa's theorem in coding theory and we give new applications to Castelnuovo theory. We also give references to classical and modern sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.