Abstract

In sensory systems, neurons are generally characterized by their receptive field, namely the sensitivity to activity patterns at the input of the circuit. To assess the role of the neuron in the system, one must also know its projective field, namely the spatiotemporal effects the neuron exerts on all of the outputs of the circuit. We studied both the receptive and projective fields of an amacrine interneuron in the salamander retina. This amacrine type has a sustained OFF response with a small receptive field, but its output projects over a much larger region. Unlike other amacrine cells, this type is remarkably promiscuous and affects nearly every ganglion cell within reach of its dendrites. Its activity modulates the sensitivity of visual responses in ganglion cells but leaves their kinetics unchanged. The projective field displays a center-surround structure: depolarizing a single amacrine suppresses the visual sensitivity of ganglion cells nearby and enhances it at greater distances. This change in sign is seen even within the receptive field of one ganglion cell; thus, the modulation occurs presynaptically on bipolar cell terminals, most likely via GABA(B) receptors. Such an antagonistic projective field could contribute to the mechanisms of the retina for predictive coding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.