Abstract
In this paper, we compute the projective class rings of the tensor product $\mathcal{H}_n(q)=A_n(q)\ot A_n(q^{-1})$ of Taft algebras $A_n(q)$ and $A_n(q^{-1})$, and its cocycle deformations $H_n(0,q)$ and $H_n(1,q)$, where $n>2$ is a positive integer and $q$ is a primitive $n$-th root of unity. It is shown that the projective class rings $r_p(\mathcal{H}_n(q))$, $r_p(H_n(0,q))$ and $r_p(H_n(1,q))$ are commutative rings generated by three elements, three elements and two elements subject to some relations, respectively. It turns out that even $\mathcal{H}_n(q)$, $H_n(0,q)$ and $H_n(1,q)$ are cocycle twist-equivalent to each other, they are of different representation types: wild, wild and tame, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Belgian Mathematical Society - Simon Stevin
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.