Abstract

Although the anterior cingulate cortex (ACC) plays a vital role in neuropathic pain-related aversion, the underlying mechanisms haven't been fully studied. The mesolimbic dopamine system encodes reward and aversion, and participates in the exacerbation of chronic pain. Therefore, we investigated whether the ACC modulates aversion to neuropathic pain via control of the mesolimbic dopamine system, in a rat model of chronic constriction injury (CCI) to the sciatic nerve. Using anterograde and retrograde tracings, we confirmed that a subgroup of ACC neurons projected to the nucleus accumbens (NAc) and ventral tegmental area (VTA), which are two crucial nodes of the mesolimbic dopamine system. Combining electrophysiology in juvenile rats 7 days post-CCI, we found that the NAc/VTA-projecting neurons were hyperexcitable after CCI. Chemogenetic inhibition of these projections induced conditioned place preference in young adult rats 10–14 days post-CCI, without modulating the evoked pain threshold, whereas activation of these projections in sham rats mimicked aversive behavior. Furthermore, the function of the ACC projections was probably mediated by NAc D2-type medium spiny neurons and VTA GABAergic neurons. Taken together, our findings suggest that projections from the ACC to the NAc and VTA mediate neuropathic pain-related aversive behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.