Abstract

The project “Characterization of Ionospheric TurbulENce Level by Swarm Constellation (INTENS)”, which was completed in 2021, was a collaboration between two Italian research institutes (INGV and INAF) and the National Observatory of Athens (NOA). It was funded by the European Space and was devoted to the investigation of turbulence and complexity in the ionospheric F2 region using data coming from the Swarm constellation. The obtained results were very intriguing because they provided the first global-scale characterization of the scaling properties of electron density and magnetic field fluctuations at the Swarm altitude as a function of geomagnetic activity and orientations of interplanetary magnetic fields. They also provided the opportunity to quantify changes in the complexity of the magnetosphere-ionosphere coupling system and to comprehend how it reacts to the onset and evolution of intense magnetic storms using entropy measures.Despite the fact that the INTENS project is no longer active, research continues. The aim of this presentation is to summarize some recent results and to show how turbulence can be one of the most significant processes for the generation of plasma density irregularities which strongly affect the Global Navigation Satellite System. A thorough understanding of turbulent ionospheric fluctuations can be crucial in the future creation of GPS Loss of Lock hazard maps, greatly advancing the effort to minimize the effects of space weather. Any future satellite mission that can accurately measure the magnetic field and electron density at high frequency, as the NanoMagSat mission should be able to, will be necessary to extend the reliability of the results to ever smaller spatio-temporal scales.  

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call