Abstract

Nowadays, both mesh meaningful segmentation (also called shape decomposition) and progressive compression are fundamental important problems, and some compression algorithms have been developed with the help of patch-type segmentation. However, little attention has been paid to the effective combination of mesh compression and meaningful segmentation. In this paper, to accomplish both adaptive selective accessibility and a reasonable compression ratio, we break down the original mesh into meaningful parts and encode each part by an efficient compression algorithm. In our method, the segmentation of a model is obtained by a new feature-based decomposition algorithm, which makes use of the salient feature contours to parse the object. Moreover, the progressive compression is an improved degree-driven method, which adapts a multi-granularity quantization method in geometry encoding to obtain a higher compression ratio. We provide evidence that the proposed combination can be beneficial in many applications, such as view-dependent rendering and streaming of large meshes in a compressed form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call