Abstract

Diffuse glioma is the deadliest form of brain cancer, and the median survival of grade IV glioma (glioblastoma, GBM) is no more than 2years even with maximal surgical resection followed by radiotherapy and chemotherapy, which are now the standard of care for GBM. Glioma shares common characteristics with most malignant tumours, such as invasiveness, rapid progression, resistance to various therapies and inevitable recurrence, while it also has its own unique features, such as high aggressiveness and immunotherapy resistance, which can be, respectively, attributed to epithelial-mesenchymal transition (EMT) and the immunosuppressive microenvironment. Here, we calculated the EMT score of glioma using The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Omnibus (GEO) datasets and validated its prognostic value. Then, we investigated its role in the glioma immune microenvironment, identified the enriched EMT-related immune genes and determined their specific biological functions in glioma. Furthermore, clinical relevance analysis showed the translational value of these EMT-related immune genes. In short, our findings reveal a critical link between EMT and the glioma immune microenvironment and offer important clues for further investigation of the underlying molecular mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call