Abstract

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Small Ubiquitin-like Modifier (SUMO)-ylation plays a crucial role in tumorigenesis. However, the SUMOylation pathway landscape and its clinical implications in LUAD remain unclear. Here, we analyzed genes involved in the SUMOylation pathway in LUAD and constructed a SUMOylation pathway signature (SUMOPS) using the LASSO-Cox regression model, validated in independent cohorts. Our analysis revealed significant dysregulation of SUMOylation-related genes in LUAD, comprising of favorable or unfavorable prognostic factors. The SUMOPS model was associated with established molecular and histological subtypes of LUAD, highlighting its clinical relevance. The SUMOPS stratified LUAD patients into SUMOPS-high and SUMOPS-low subtypes with distinct survival outcomes and adjuvant chemotherapy responses. The SUMOPS-low subtype showed favorable responses to adjuvant chemotherapy. The correlations between SUMOPS scores and immune cell infiltration suggested that patients with the SUMOPS-high subtype exhibited favorable immune profiles for immune checkpoint inhibitor (ICI) treatment. Additionally, we identified UBA2 as a key SUMOylation-related gene with an increased expression and a poor prognosis in LUAD. Cell function experiment confirmed the role of UBA2 in promoting LUAD cell proliferation, invasion, and migration. These findings provide valuable insights into the SUMOylation pathway and its prognostic implications in LUAD, paving the way for personalized treatment strategies and the development of novel therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call