Abstract

Endometriosis is an estrogen-dependent disorder primarily associated with pelvic pain and infertility in up to 10% of women of reproductive age. Recent studies suggest that resistance to progesterone action may contribute to the development and pathophysiology of this disorder. In this study we examined the in vivo and in vitro expression and function of one progesterone receptor (PR) coactivator, Hic-5, in human endometrium and endometrial stromal fibroblasts (hESFs) from 29 women with and 30 (control) women without endometriosis. Hic-5 was highly expressed in stromal, but not epithelial, cells in women without endometriosis, in a cycle-dependent manner. In contrast, Hic-5 expression was not regulated during the menstrual cycle in hESFs from women with endometriosis and was significantly reduced in hESFs from women with vs. without disease. Hic-5 mRNA expression throughout the cycle in endometrium from control women, but not those with endometriosis, correlated with expression of PR. Hic-5 mRNA in hESFs was significantly up-regulated in control but not endometriosis hESFs after treatment in vitro with 8-bromoadenosine-cAMP for 96 h but only modestly after 14 d of progesterone treatment. Hic-5 silencing did not influence cAMP-regulated gene expression but affected genes regulated solely by progesterone (e.g. DKK1 and calcitonin). Together the data suggest that the proposed progesterone resistance in endometrium from women with endometriosis derives, in part, from impaired expression of the PR coactivator, Hic-5, in endometrial tissue and cultured endometrial stromal fibroblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.