Abstract

Abstract Graphical shortcut methods are useful tools for the design of distillation columns. The proposed nonideal shortcut method includes a graphical representation and is based on the concept of operation leaves. This new method uses a production segment rather than a completely specified product, which eliminates any sensitivity to the composition of the minor product. Concerning phase equilibria, no restrictive assumptions are made. The study aimed (1) to determine whether a specified separation respects the mass balance and thermodynamic feasibility and (2) to find the minimum reflux ratio for a preliminary design of the column. Designs obtained with this new method for ideal, non-ideal, and azeotropic mixtures give purity and recovery rates close to the specifications, which might be impossible to obtain with a conventional ideal shortcut like the well-known Fenske–Underwood–Gilliland shortcut method. The distillation boundaries of azeotropic mixtures are taken into account thanks to a non-ideal thermodynamic model applied to the calculation, which is not the case with a conventional ideal shortcut. The paper examines the following mixtures: an ideal mixture of ethanol, n -propanol, and n -butanol; a non-ideal mixture of acetone, water, and acetic acid; and an azeotropic mixture of acetone, isopropanol, and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.