Abstract

We describe the design, fabrication, and preliminary test of a novel solar chemical reactor for conducting the thermal dissociation of ZnO into zinc and oxygen at above 2000 K. The reactor configuration features a windowed rotating cavity-receiver lined with ZnO particles that are held by centrifugal force. With this arrangement, ZnO is directly exposed to high-flux solar irradiation and serves simultaneously the functions of radiant absorber, thermal insulator, and chemical reactant. The reactor design respects the constraints imposed by both the chemistry of the decomposition reaction and the transitory nature of solar energy. A 10 kW prototype reactor, made from conventional reliable materials, was tested at PSI’s high-flux solar furnace and exposed to peak solar radiation fluxes exceeding 3500 kW m −2. The reactor system proved to have low thermal inertia and resistance to thermal shocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.