Abstract

ABSTRACT: Liquid dominated geothermal systems are expected to account for most of the growth in geothermal energy production in the coming decades. Production of water from such systems could significantly augment fresh water supplies. The feasibility of water exploitation is clouded by potential problems related to seismic impacts, land subsidence and the composition of geothermal brines. If these problems can be overcome at little cost, desalination of brines may be feasible. Estimates of water production costs are presented for a variety of desalination technologies, plant sizes and brine water compositions. These estimates show that production costs will range from $139.10/A.F. to $436.00/A.F. at the plant boundary. Economies of scale and brine composition are important determinants of cost. Production costs are substantially in excess of the value of water in alternative uses. However, in certain unique situations, it may be efficient to desalt brines for use in upgrading the quality of municipal water, industrial process water and irrigation water. Unique situations aside, geothermal brines are not likely to provide an economical source of fresh water in the absence of striking changes in the patterns of supply and demand for water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.