Abstract
We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.