Abstract

The plant secondary metabolite, β-caryophyllene, is a ubiquitous component of many plant resins that has traditionally been used in the cosmetics industry to provide a woody, spicy aroma to cosmetics and perfumes. Clinical studies have shown it to be potentially effective as an antibiotic, anesthetic, and anti-inflammatory agent. Additionally, there is significant interest in engineering phototrophic microorganisms with sesquiterpene synthase genes for the production of biofuels. Currently, the isolation of β-caryophyllene relies on purification methods from oleoresins extracted from large amounts of plant material. An engineered cyanobacterium platform that produces β-caryophyllene may provide a more sustainable and controllable means of production. To this end, the β-caryophyllene synthase gene ( QHS1) from Artemisia annua was stably inserted, via double homologous recombination, into the genome of the cyanobacterium Synechocystis sp. strain PCC6803. Gene insertion into Synechocystis was confirmed through PCR assays and sequencing reactions. Transcription and expression of QHS1 were confirmed using RT-PCR, and synthesis of β-caryophyllene was confirmed in the transgenic strain using GC-FID and GC–MS analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.