Abstract

This paper presents a multi-agent simulation of the production of step-level public goods in social networks. In previous public goods experimental research the design of the sequence ordering of decisions have been limited because of the necessity of simplicity taking priority over realism, which means they never accurately reproduce the social structure that constrains the available information. Multi-agent simulation can help us to overcome this limitation. In our model, agents are placed in 230 different networks and each networks’ success rates are analyzed. We find that some network attributes -density and global degree centrality and heterogeneity-, some initial parameters of the strategic situation -the provision point- and some agents’ attributes -beliefs about the probability that others will cooperate-, all have a significant impact on the success rate. Our paper is the first approach to an explanation for the scalar variant of production of public goods in a network using computational simulation methodology, and it outlines three main findings. (1) A less demanding collective effort level does not entail more success: the effort should neither be as high as to discourage others, nor so low as to be let to others. (2) More informed individuals do not always produce a better social outcome: a certain degree of ignorance about other agents’ previous decisions and their probability of cooperating are socially useful as long as it can lead to contributions that would not have occurred otherwise. (3) Dense horizontal groups are more likely to succeed in the production of step-level public goods: social ties provide information about the relevance of each agent’s individual contribution. This simulation demonstrates the explanatory power of the structural properties of a social system because agents with the same decision algorithm produce different outcomes depending on the properties of their social network.

Highlights

  • 1.1 Since individual rationality can lead to a suboptimal outcome, a collective action problem emerges in the production process of public goods (Taylor 1987)

  • Several characteristics of public goods explain why their production takes the form of a "social dilemma" (Hardin 1982; Olson 1965; Taylor 1987): a) the good is jointly produced by the contributions of the individual group members, but typically not every single member's contribution is required; b) contributions are costly even when the value that is obtained from the public good is higher than the individual cost of the contribution; c) once the good is produced, it will be available to all members of the group since excluding non-contributing members from its enjoyment is difficult or costly; d) a member's usage of the good does not diminish its availability to other members

  • Rational agents with an identical decision algorithm can generate very different social outcomes depending on the relational structure in which they are embedded

Read more

Summary

Introduction

1.1 Since individual rationality can lead to a suboptimal outcome, a collective action problem emerges in the production process of public goods (Taylor 1987). Several characteristics of public goods explain why their production takes the form of a "social dilemma" (Hardin 1982; Olson 1965; Taylor 1987): a) the good is jointly produced by the contributions of the individual group members, but typically not every single member's contribution is required; b) contributions are costly even when the value that is obtained from the public good is higher than the individual cost of the contribution; c) once the good is produced, it will be available to all members of the group since excluding non-contributing members from its enjoyment is difficult or costly; d) a member's usage of the good does not diminish its availability to other members (non-rivalness). We can stipulate that either the good has a price by unit (continuous good) or it has a unique price that has to be reached (step-level good)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call