Abstract

Graphene has attracted significant interest because of its excellent electrical properties. However, a practical method for producing graphene on a large scale is yet to be developed. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups and recovering the conjugated structure. GO can be produced using inexpensive graphite as the raw material via cost-effective chemical methods. High vacuum and temperature (10−7 mbar and 1100°C, respectively) conditions are well-known to enable the preparation of reduced powder at the laboratory scale. However, a large-scale high vacuum reduction system that can be routinely operated at 10−7 mbar requires considerable initial capital as well as substantial operational and maintenance costs. The current study aims at developing an inexpensive method for the large-scale reduction of graphene oxide. A stainless steel vessel was evacuated to backing-pump pressure (10−2 mbar) and used to process GO at a range of temperatures. The reduction of GO powder at low vacuum pressures was attempted and investigated by X-ray diffraction and Fourier transform infrared spectroscopy. The experimental results of processing GO powder at various temperatures (200–1000°C) at relatively low pressures are reported. The microstructures of the processed materials were investigated using scanning electron microscopy and chemical microanalyses via energy dispersive X-ray analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.