Abstract

Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NOX−-N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.