Abstract

The prediction of evaluation a U- and V-shaped cracks on the surface and subsurface of a continuously cast steel slab, is investigated during hot rolling. The numerical simulation is carried out by means of FE-code DEFORM 3D. Therefore, an algorithmic decision tree was developed by the C 4.5 program and applied in prediction of surface and subsurface defects behaviour during the numerical simulation of hot rolling. Cracks were selected as a transversal and longitudinal to the rolling direction. In addition to the transversal and vertical U- and V-shaped cracks on the surface; subsurface defect, referred as “circle hole”, on the side part of workpiece were evaluated. In terms of surface defects evolution, U-shaped cracks show a deteriorating influence during hot rolling. On the basis of the algorithmic decision tree established, the prediction of cracks evolution (defined before plastic deformation process) during hot rolling is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call