Abstract

Abstract— We present a purely physical model for the calculation of depth‐dependent production rates in 2π exposure geometries by galactic cosmic rays (GCR). Besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on the integral number of GCR particles in the lunar orbit. We derived this value from adjusting modeled depth profiles for 10Be, 26Al, and 53Mn to measured data from the Apollo 15 drill core. The J0,GCR value of 4.54 cm−2 s−1 and the solar modulation parameter of M = 490 MeV determined this way for 1 AU is in reasonable agreement with the J0,GCR value derived recently for the meteoroid orbits (Leya et al., 2000b). We also show that the mean GCR proton spectrum in the lunar orbit has not changed substantially over about the last 10 Ma. For the major target elements we present depth‐dependent production rates for 10Be, 14C, 26Al, 36Cl and 53Mn, as well as for the rare gas isotopes 20,21,22Ne. In addition we present production rates for 36,38Ar from Fe and Ni. The new results are consistent with the data for stony meteoroids presented recently by our group (Leya et al., 2000b), but for the rare gas isotopes the new production rates sometimes differ significantly from earlier estimates. The applicability of the 22Ne/21Ne ratio as a shielding parameter is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.