Abstract

BackgroundThe pathogenesis of rabies is associated with the inability to deliver immune effectors across the blood-brain barrier and to clear virulent rabies virus from CNS tissues. However, the mechanisms that facilitate immune effector entry into CNS tissues are induced by infection with attenuated rabies virus.Methodology/Principal FindingsInfection of normal mice with attenuated rabies virus but not immunization with killed virus can promote the clearance of pathogenic rabies virus from the CNS. T cell activity in B cell–deficient mice can control the replication of attenuated virus in the CNS, but viral mRNA persists. Low levels of passively administered rabies virus–neutralizing antibody reach infected cells in the cerebellum of B cell–deficient mice but are not sufficient to mediate virus clearance. Production of rabies virus-specific antibody by B cells invading CNS tissues is required for this process, and a substantial proportion of the B cells that accumulate in the CNS of mice infected with attenuated rabies virus produce virus-specific antibodies.Conclusions/SignificanceThe mechanisms required for immune effectors to enter rabies virus-infected tissues are induced by infection with attenuated rabies virus but not by infection with pathogenic rabies viruses or immunization with killed virus. T cell activities can inhibit rabies virus replication, but the production of rabies virus–specific antibodies by infiltrating B cells, as opposed to the leakage of circulating antibody across the BBB, is critical to elimination of the virus. These findings suggest that a pathogenic rabies virus infection may be treatable after the virus has reached the CNS tissues, providing that the appropriate immune effectors can be targeted to the infected tissues.

Highlights

  • T cell activities can inhibit rabies virus replication, but the production of rabies virus–specific antibodies by infiltrating B cells, as opposed to the leakage of circulating antibody across the blood-brain barrier (BBB), is critical to elimination of the virus. These findings suggest that a pathogenic rabies virus infection may be treatable after the virus has reached the central nervous system (CNS) tissues, providing that the appropriate immune effectors can be targeted to the infected tissues

  • Rabies viruses spread from peripheral sites of entry to the central nervous system (CNS) tissues via axonal transport thereby bypassing the specialized features of the neurovasculature known as the blood-brain barrier (BBB)

  • Live-attenuated rabies virus vaccines are effective at delivering the immune cells capable of clearing the virus into CNS tissues and promote recovery from a rabies virus infection that has spread to the brain while conventional vaccines based on killed rabies virus do not

Read more

Summary

Introduction

Rabies viruses spread from peripheral sites of entry to the central nervous system (CNS) tissues via axonal transport thereby bypassing the specialized features of the neurovasculature known as the blood-brain barrier (BBB). In the absence of a mechanism to compromise the barrier function of the neurovasculature, circulating rabies virus-specific immune effectors, whether raised by the infection or by active or passive immunization, would be unable to mediate an antiviral response in CNS tissues. This may explain why conventional post-exposure treatment of human rabies, consisting of active and passive immunization, is unsuccessful if begun after the appearance of signs of the disease [2,3,4]. The mechanisms that facilitate immune effector entry into CNS tissues are induced by infection with attenuated rabies virus

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.